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1. Introduction

Because the NEXRAD radar network provides only single-Doppler scanning over most areas in the U. S., research efforts have been undertaken to develop various methods for meteorological parameter retrievals from single-Doppler observations. To assimilate single-Doppler radar observation into mesoscale models, the previous retrieval methods need to be upgraded, at least, with a background term introduced in the costfunction to utilize the information provided by model predictions. Theoretically, how should the background term be introduced in consistency with the general formulation derived for the conditional maximum likelihood estimate? This problem is addressed in the next section. Practically, how should the upgraded costfunction be simplified under certain assumptions to make the related estimation and computations feasible. These questions are addressed in this paper. Examples of numerical experiments is also be presented to show how the previous developed simple adjoint method is upgraded for Doppler radar data assimilation.
2. Optimal estimate and variational method


The prediction model can be expressed by


xk+1 - f(xk) = qk, 
(1)

where xk is the state vector representing the discrete fields of the prognostic variables, f the forward model operator, qk the model error, and the subscript k denotes the k-th time level of the model integration. The observation model can be expressed by


ym - h(xm) = rm,
(2)

where ym is the vector of observations, h the observation operator, and rm the observation error, and the subscript m denotes the m-th time level of the observations. 


Assume that all the errors are Gaussian with zero-mean (non-biased or bias-removed), and the observation error is not correlated with the model error and the background error (denoted by b) for the initial state x0 (and/or other reference states). For linear f and h, one can show by using Sherman and Bayes' theorems (Jazwinski 1970) that the conditional maximum likelihood estimate or, say, the optimal estimate is given by the minimizer of
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J = bTB-1b + ∑qkTQk-1qk + ∑'rmTR-1rm + ∑kTck, 

where B, Qkk' and R are the covariance matrices for background error, model error and observation error, respectively, ∑ the summation from k = 1 to K, ∑' the summation from m = 0 to M, ( )T the transpose of ( ), and  the vector Lagrangian multiplier for the vector constraint given by equation (1), that is, ck+1  xk+1 - f(xk) - qk. The data assimilation time window contains K + 1 model time levels and M + 1 observation time levels.


The above costfunction presents a general form of 4dVAR. Reduced forms, such as the perfect-model 4dVAR (P4dVAR), simple-adjoint 4dVAR (S4dVAR, developed in this paper), 3.5dVAR (Xu et al. 2001a; Gu et al. 2001)), and 3dVAR can be derived with the following simplifications: 


P4dVAR:
q = 0;

S4dVAR:
q = 0 (or independent of k) and c = cr ;

3.5dVAR:
= 0 and K = M = 1;

3dVAR:  
(1) not used and M = 0;

where cr denotes the radial-momentum equation derived by projecting the vector-momentum equation in (1) onto the radial direction of the radar beam (Xu et al. 2001b). 

3. S4dVAR

Practical applications of the above formulations encounter four major problems: (i) non-Gaussian errors associated with the nonlinear operators f and h, (ii) biases caused by unknown systematic errors, (iii) observational demands and computational difficulties in estimating error covariance matrices R, B and Q, and (iv) high computational costs in minimizing the costfunction. Problems (i)-(iii) are beyond the scope of this paper. The S4dVAR developed in this paper assumes that all the errors are approximately Gaussian (or at least unimodal in terms of their probability densities) and non-biased (or bias-removed), and their covariance matrices have relatively simple forms. In particular, B is specified empirically as in the 3.5dVAR [see (5) of Xu et al. 2001a] while R and Q and their related terms in the costfunction are treated in the same way as in (2.6) of Xu et al. (2001b). In addition, the costfunction is formulated in terms of increment of the analysis with respect to the background (as in Xu et al. 2001a) and the incremental fields are expressed by expansions of Bi-spline basis functions on coarse finite-element meshes (as in Xu et al. 2001b). The effect of topography at the low boundary is imposed as a weak constraint in the costfunction, so that all the model equations are formulated simply on a Cartesian grid as in Xu et al. (2001b). 
4. Tests with NEXRAD data


The S4dVAR is tested with NEXRAD Level II data collected by KJAX radar at Jacksonville, Florida, for the 9-10 September 1999 squall line event. The squall line was observed by the radar as it was moving from land near Jacksonville to ocean during the period from 20:05Z 9/9 to 03:02Z 9/10. The radar volume scans (precipitation mode) were about 6 minutes apart, and each volume scan contained 9 different elevation angles varying from 0.48 to 19.5 degrees. The raw radar data were processed by the same quality control package as in Gu et al. (2001). 


Three consecutive volume scans (at 00:52Z, 00:58Z and 01:04Z) are used by the S4dVAR to produce analyzed increment fields (averaged over the data assimilation time window centered at 00:58Z). The background fields are produced by the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS, Hodur 1997). The model domain configuration is shown in Fig. 1. The vertical grid (30 levels) and other parameters are set to be the same as COAMPS operational runs. The analysis grid has the same horizontal resolution as the model fine grid (6 km) but is uniform (∆z = 350 m) in the vertical with 31 levels from 0 to 10.5 km.
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Fig. 1. COAMPS domains nested with 54, 18 and 6 km grids. The dot shows the KJAX radar location.


The control run is initialized (cold start) at 12:00Z 9/9. After the first 12-hr model run, the COAMPS conventional data assimilation is performed at 00:00Z 9/10, and then another 6-hr run is launched (warm start). No precipitation is produced by the control run. The test run is performed by adding the increment fields produced by the S4dVAR with the KJAX data to the model at 00:58Z. The precipitation produced by the test run captures the observed precipitation reasonably well (Fig. 2a,b).
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Fig. 2. Test-run produced (upper panel) and observed (lower panel) hourly precipitation at 02:00Z 9/10. 
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