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1. Introduction


Low-altitude nearly horizontal radio propagation is strongly affected by ducts associated with the capping inversion (and, particularly, the moisture gradient) of the atmospheric boundary layer especially over the oceans. The key variables that influence the ducting effects are the base height, depth and intensity of the inversion determined from the vertical profile of the modified refractivity defined by (Roger 1997):


M(z) = 77.6(p + 4810 e/T)/T + 0.157z,

where p is the pressure (mb), e the water vapor pressure (mb), T the temperature (K), and z the height (m) above the ground or sea surface. Clearly, the above three duct parameters, denoted by h, ∆z and ∆M, respectively, are nonlinear functions of the primitive variables (pressure, temperature and humidity) and they are not directly analyzed by the conventional optimal interpolation (OI) or 3-dimensional variational method (3DVAR). As a linear interpolator, the conventional 3DVAR cannot correct phase errors in M(z). Instead, it may produce spurious double inversion layers when the observed inversion layer is entirely above or below the background inversion layer (provided by the model forecast). The vertical correlation functions used in the conventional 3DVAR are often too smooth and thus smear the inversion. The inversion-related problems are notorious in boundary layer data assimilation, although this paper is focused on refractivity data assimilation.


The inversion-related vertical phase error problems may be eliminated if the vertical phase error in the background inversion can be corrected by stretching the vertical coordinate along each grid column. The latter, however, requires the two-dimensional field of the inversion base height h be correctly estimated. To this end, an automated algorithm is developed to detect inversion layers and compute duct parameters from radiosonde observations and model forecasts (the details are omitted) and then a 2DVAR is developed to "optimally interpolate" the duct parameters from observation locations to the model grid. The error statistics required by the 2DVAR are estimated from the innovations (observations minus forecasts) obtained from the Variability of Coastal Atmospheric Refractivity (VOCAR) field experiment (Fig. 1).

___________________________________________
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Fig. 1. VOCAR radiosonde stations used for innovation analysis for the period from 8/23/93 to 9/04/93. The innovations are given by the VOCAR observations (every 4 hours) minus the forecasts (of 4, 8, 12 hours) from the Navy Operational Regional Atmospheric Prediction System (NORAPS with 20 km horizontal resolution and 30 vertical levels, see Burk and Thompson, 1997; Rogers et al. 1996) 

2. Basic assumptions and error statistics


The base height innovation at the i-th observation station is defined by hdi  hoi - hfi =  h"i - h'i, where (•)o denotes the observation, (•)f the forecast, (•)" the observation error, and (•)' the forecast error. All the observations are assumed to be unbiased but have random errors that are not correlated between different stations and independent of forecast errors. Thus, the forecast bias is given by the innovation bias: 


<h'i> = <hdi>,
(1)

where <(•)> the ensemble mean or time mean (under the ergodicity assumption). The unbiased part of the forecast error is horizontally correlated. The auto-correlation function is assumed to be Gaussian-elliptical and is denoted by Rhh(rij, a, b, ß) where rij = xi - xj is the horizontal vector distance between the two correlation points i and j, x  (x, y), a and b are the correlation length scales along the long and short axes of the ellipse, respectively, and ß is the angle between the x-coordinate and the long axis of the ellipse. 


The normalized innovation is defined by Hdi  [hdi - <hdi>]/hd(xi) where 


hd(xi)2 = <(hdi - <hdi>)2> 
(2)

is the innovation variance. Based on the above assumptions, the covariance of Hdi can be partitioned as follows:


<HdiHdj> 


= [1 - c(xi)c(xj)]ij + c(xi)c(xj)Rhh(rij, a, b, ß).  



(3)
where c(xi) = hf(xi)/hd(xi), and hf(xi) = <(h'i - <h'i>)2>1/2 is the forecast error standard deviation. Note that <HdiHdi> =1, ii = 1, rii = 0, Rhh(rii, a, b, ß) = 1, so when i = j the two terms on the righthand side of (3) represent, respectively, the observation and forecast error variances normalized by the innovation variance. To reduce the number of unknowns, c(xi) is assumed to be constant and this treatment is similar to the innovation analyses of Hollingsworth and Lönnberg (1986) and Xu et al (2001). The four parameters (a, b, ß, c) are determined by least-square fitting of the analytical expression on the righthand side of (3) to the values of <HdiHdj> computed from the VOCAR innovation data. The results are listed in Table 1. By setting a = b and ß = 0, the correlation function reduces to Gaussian-isotropic (see Fig. 2). 


The above innovation method is similarly used to estimate the error variances and auto-correlation functions for the remaining two duct parameters. The resulting parameter values for the ∆M-∆M auto-correlation are listed in the second row of Table 1. The ∆z-∆z auto-correlation, however, is found to drop rapidly to nearly zero as |rij| increases to about 70 km and then fluctuate around zero as |rij| increases beyond 70 km. Since the horizontal correlation length scale for the ∆z-∆z auto-correlation error is only about 50 km and is shorter than the spacing between most of the VOCAR stations, the 2DVAR analysis of ∆z becomes ineffective. Fortunately, ∆z can be assumed to be a random variable for radio propagation modeling and can be estimated by using radio horizontal propogation measurements (Rogers 1997), so the 2DVAR analysis of ∆z can be avoided. All the cross-correlations (h-∆M, h-∆z and ∆M-∆z) are found to be insignificant for the VOCAR data, so only the univarate version of 2DVAR is considered in section 4.

Table 1. Parameter values ______________
     
a (km)
b(km)
 ß (o)
c
_

for h
400 
290 
56.0  
0.66


∆M  
220
173 
37.1
0.64___
[image: image2.wmf]Fig. 2. Least-square fitting of isotropic h-h auto-correlation function (solid curve) to innovation correlation data (dots). The resulting parameter values are a = b = 333.5 km and c = 0.6663. 

3. Forecast bias and error standard deviation


After the forecast bias is computed from (1) at each station, the bias field bh(x) is modeled by thin-plate spline by minimizing the following costfunction


J = ∑(bh(xi) - <h'i>)2 + ||∆Hbh(x)||,

(4)

where ∆H is the horizontal Laplacian,  is the weight for the thin-plate penalty term (see Chapter 2 of Wahba 1990). If the bias computed from (1) at each station is sufficiently accurate, then  0 and the minimizer of (4) is given by the solution of the following boundary value problem:


∆H2bh = 0  for x ≠ xi

bh = <h'i> and Hb = 0 at x = xi, 


b(x) <h'i>/N  for |x|  ,


where H denotes the horizontal gradient and the summation from 1 to N (the total number of observation sets). The estimated bias field is plotted in Fig. 3a.
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Fig. 3. Base height forecast bias (a) and forecast error standard deviation (b).


The above thin-plate spline model is also used to estimate the forecast error standard deviation field hf(x) and the result is plotted in Fig. 3b. The bias field and error standard deviation field for ∆M forecast are modeled similarly and the details are omitted.

4. 2DVAR analysis


The 2DVAR analysis leads to the following vector equation for the analysis of the inversion base height:


ha = (hf - b) + FHTQ-1[ho - H(hf - b)],

where hf and b are the forecast and forecast bias (vectors in the model grid space), respectively, ho the observation (vector in the observation space), H the observation operator (transformation matrix from the model grid space to observation space), and Q = HFHT + O. F and O are the forecast and observation error covariance matrices, respectively, and they are computed from the error variances and correlation obtained in sections 2 and 3. 


Although the VOCAR data are limited to 8 stations (Fig. 1), the 2DVAR works well as shown by the comparison between the forecast and analyzed base height fields in Figs. 4a-b. The analyses are compared with the forecasts and observations of h for the entire VOCAR period at the San Clemente Island (Fig. 5a) and Point Mugu (Fig. 5b). As shown, the 2DVAR is effective in correcting the forecast bias and filtering random observation errors, and this effectiveness is seen not only in space but also in time although the analysis is performed in space only). Similar effectiveness is seen for the analyses of ∆M in Figs. 6a-b.
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Fig. 4. Base height (in m) at 20:00 UTC 9/2/1993 from NORAPS forecast (a) and 2DVAR analysis (b).
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Fig. 5. Time series of forecast, observation and analysis of h at (a) San Clemente Island and (b) Point Mugu.
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[image: image10.wmf]Fig. 6. As in Fig. 5 but for time series of ∆M.


Radio propagation measurements can be related nonlinearly, with some degree of ambiguity, to the duct parameters (Rogers 1997). These measurements can be assimilated together with the radiosonde observations by upgrading the current 2DVAR. This problem is under investigation and progress in this direction will be reported at the conference.
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