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1. INTRODUCTION

     The prediction of cloud ceiling and visibility (C&V) continues to be a formidable challenge. Aviation safety and operational efficiency depend heavily upon accurate and timely forecasts of these atmospheric conditions. In recent years, efforts have been made to evaluate the use of numerical models in analyzing and forecasting C&V (Stoelinga and Warner 1998; Cairns et. al. 1994 a, b; Porter and Seaman 1995). The results of these studies indicate that numerical models may provide valuable information, which in turn could translate into improved short-term C&V predictions. In addition to numerical model techniques, observational techniques have also shown skill. Vislocky and Fritsch (1997) developed an observations-based (OBS-based) forecast system that outperformed a model output statistic based (MOS-based) system and climatology. Their results showed that the OBS-based system was superior to persistence climatology at 1-, 3-, and 6-h lead times and to the MOS-based approach  at 1- and 3-h. Using fuzzy logic, Hicks (1997) created a “FuzzyMOS” C&V forecast algorithm based on issue hour, forecast period, initial ceiling or visibility category, MOS, and verified MOS data. He found that the FuzzyMOS system resulted in a 12.9% and 8.0% improvement over MOS and Terminal Aerodrome Forecasts (TAFs), respectively.  Although the above mentioned techniques have shown promise in the short-term prediction of C&V, it is believed that further improvements in the analysis and prediction of these aviation hazards may be accomplished by combining these techniques, along with other data, in a fuzzy logic forecast system.

     The research presented herein uses a fuzzy expert system in an attempt to improve C&V analysis and short-term forecasts. Data from satellites, surface observations, numerical model, and observational-based predictions are combined into a C&V detection and prediction scheme. The primary models utilized during the initial development of the C&V algorithm are the Navy’s COAMPS (Coupled Ocean/Atmospheric Mesoscale 

Prediction System) and the Rapid Update Cycle (RUC2) model. The research emphasizes developing an algorithm that includes the flexibility (
to integrate new data sources and nowcasting techniques. Similar data integration techniques have been successfully used to provide better analysis and forecasts of atmospheric turbulence and icing (Sharman and Cornman 1998; McDonough and Bernstein 1999). 

     Section 2 describes in more detail the data used in the development of the prototype system. The fuzzy logic methodology used in the C&V algorithm is described in section 3.

2. DATA 

     The description in this section serves as a preliminary outline of the data that are being used during the development of the C&V forecasting algorithm. It should be stressed that this is by no means a final selection of input sources. Other data sources and nowcasting methods are continually being explored in an effort to understand and thoroughly identify potential sources of meaningful information. 

2.1 Surface Observations
     Hourly METAR observations for the area of interest are acquired and interpolated to a user-specified grid. During the development of the algorithm, the RUC2 grid has served as the primary output grid. The authors are aware of the difficulties associated with interpolating discrete fields such as ceiling and visibility; therefore, various interpolation techniques have been  explored. Presently, nearest neighbor and natural neighbor interpolation schemes are options in the prototype C&V algorithm. In addition to surface land reporting stations, buoy and ship reports are also being acquired and will be utilized if they are available near the forecast time. The logistics of acquiring high temporal resolution ASOS data is also being investigated. These data would be invaluable to the analysis and short-term forecasts of C&V. 

2.2 Satellite
      Cloud location retrieval is accomplished using selected multispectral Geostationary Operational Environmental Satellite (GOES) data. These data can be updated hourly at a 4 km resolution. This provides additional information that is used to cross-check and validate cloud fields produced by other data sources. Continuing efforts will not only use cloud masks, but will incorporate low cloud and cloud classification products into the analysis portion of the algorithm. It is imperative that remote sensing techniques are incorporated into the algorithm to remedy areas where the spatial resolution of surface observations is less than adequate.

2.3 NUMERICAL MODELS

     Model simulated, state of the atmosphere variables, from the RUC2 and COAMPS models are translated into cloud ceiling and visibility fields using a translation algorithm (TA) based on empirical and theoretical relationships between hydrometeor attributes and light extinction (Stoelinga and Warner 1999). Stoelinga and Warner (1998) employed a similar technique to determine C&V from the nonhydrostatic Pennsylvania State University-NCAR mesoscale model, MM5. In the future, other models will be added to allow coverage of additional domains providing improved performance.  Additionally,  the inclusion of aerosols in the TA will also be investigated.

2.4 PERSISTENCE AND CLIMATOLOGY
     In many cases, a good subjective forecast is the result of understanding and incorporating knowledge related to the characteristics of the forecast location and the present conditions at that location. This factor is addressed here by developing and incorporating persistence and climatology into the algorithm. Current observations of C&V and the time tendencies of these variables provide a measure of persistence while a database covering a 35 year period (1961-95) is used to develop climatologies for selected locations in the area of interest.

2.5 FUTURE DATA SOURCES
     Other input sources that will be considered during future phases of development include pilot reports (PIREPS), Terminal Aerodrome Forecasts (TAFs), radar data, and observation-based statistical forecasts. These sources will serve to enhance analyses and nowcasts produced by the C&V algorithm.

3. CEILING AND VISIBILITY ALGORITHM
     The lack of accurate ceiling and visibility forecasts is the result of a variety of factors including the following:

[image: image1.wmf]RUC2

METAR DATA

SATELLITE DATA

CLIMATOLOGY

COAMPS


· Quality forecasts are dependent upon having a dense data network that can supply thorough information concerning the initial conditions within the forecast domain. In many cases, this information is not available on the spatial and temporal scales necessary.

· A complete understanding of the physical processes associated with fog and low stratus has not been achieved. In aviation operations, fog and low stratus are responsible for limiting navigation by visual reference more than any other weather phenomena (Dep. of the Air Force 1990).

· Although advancements in numerical modeling have been substantial over the past few decades, considerable research and development is necessary to reach a state where these models can more accurately resolve clouds and precipitation. It is important to correctly predict location, type, intensity, and evolution.

     In an attempt to combat these deficiencies, the research presented herein integrates various data and forecasting techniques that are proven to have skill in the analysis and short-term forecast of C&V. Operationally, forecasters currently subjectively examine these data and use established “rules of thumb” to reach conclusions about future C&V, whereas the algorithm developed in this research uses these data and rules in adaptive weighting and data fusion techniques in an attempt to replicate the reasoning process of the human forecaster. Figure 1 displays a schematic outlining the main processes that take place during the execution of the algorithm. 

I. Data is selected and prepared for input into the system.

II. Fuzzy logic membership functions are assigned.

III. Interest fields from the individual inputs are created and weighted accordingly.

IV. Interest fields are then combined and verified before producing a final product.
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     Verification is used to dynamically update the weighting of each interest field. For example, if the C&V output from “model 1” had more skill than the output from “model 2” over some specified period in 

history, then the weights would be dynamically adjusted to reflect this fact, with a weighting increase and decrease associated with model 1 and 2, respectively. The fuzzy logic system attempts to maximize input’s strengths, while at the same time, minimizing its weaknesses. Mathematically, the expert system can be represented using the following expression (Kosko [image: image3.wmf]1997):
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The output from the algorithm, Xf, where f is ceiling or visibility, is the weighted normalized sum of the member inputs. w denotes the weight applied to the inputs and c is the confidence value. A confidence of zero would indicate that the input is not available and would be excluded from the sum. The bias produced by the system is indicated by b. Three of the primary strengths of such a system are (1) its ability to easily accommodate new inputs, (2) the capacity to produce analyses and predictions when individual inputs are missing, and (3) the ability to dynamically adjust according to how each input verifies.

    The prototype being developed during fiscal year 2000 uses a phase-based approached. In this approach, a single input source is incorporated into the algorithm during each phase of development. The benefit of this procedure is that the influence of each input can be determined, adjusted, and compared to other inputs. Data sources assimilated during the initial development year are displayed in Figure 1. 

4. SUMMARY

     A fuzzy logic method for the analysis and short-term forecast of C&V is presented. This method may be capable of improving aviation efficiency and safety by reducing the errors associated with short-term forecasts of C&V. Development of the C&V prototype is ongoing and performance results will be compiled to evaluate the algorithm’s strengths and weaknesses.
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Figure � SEQ Figure \* ARABIC �1�. Schematic representation of the fuzzy logic based C&V analysis and forecast prototype
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